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An efficient synthesis of dihydroindenofurans was carried out starting from the Baylis–Hillman adducts
via a Pd-catalyzed 5-endo-trig-carbopalladation and enolate O-alkylation cascade as a key step. This is the
first example of enolate O-alkylation with a C(sp3)-bound palladium intermediate.
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The palladium-catalyzed C-arylation reaction of a ketone eno-
late with haloarenes is a powerful method for the construction of
a-aryl ketones that has demonstrated excellent substrate scope.1

The reactions with the enolates of ester and malonate have also
been reported.2 However, all the reactions provided C-arylated
products. Intramolecular O-arylation could be realized when the
enolate and aryl halide are present together in the same molecule
and when the competitive C-arylation is difficult at the same time.
Recently, a Pd-catalyzed intramolecular O-arylation has been
applied for the synthesis of many interesting compounds including
benzofurans and isocoumarins.3

The Baylis–Hillman reaction, which involves the coupling of
activated vinylic compounds with electrophiles under the catalytic
influence of a tertiary amine, gives rise to adducts, so called Baylis–
Hillman adducts, with a new stereocenter and has proven to be a
very useful carbon–carbon bond-forming method in the synthesis
of highly functionalized molecules.4 The chemical transformations
of Baylis–Hillman adducts provided many interesting compounds
and are well documented in many review articles.4 The Baylis–Hill-
man adducts could also supply various substrates that can be used
in the Pd-catalyzed reaction to furnish valuable compounds.4g,5 As
an example, a Pd-catalyzed domino reaction with modified Baylis–
Hillman adducts has been used for the synthesis of tetracyclic but-
terfly-like scaffold.5a

During the studies5 we reasoned out that dihydroindenofuran
scaffold could be constructed in a one-pot via the intramolecular
ll rights reserved.

: +82 62 530 3389.
5-endo-trig-carbopalladation and enolate O-alkylation cascade, as
shown in Scheme 1. Numerous dihydrofuran moiety-containing
tri- and6 polycyclic7 compounds were found in biologically impor-
tant natural products, and the construction of these scaffolds has
received much attention.6,7 Pd-catalyzed O-arylations between
arylpalladium intermediates and enolates have been reported as
described above;3 however, an intramolecular O-alkylation
between alkylpalladium intermediate and an enolate has not been
reported, to the best of our knowledge.3h,i

Two cinnamyl bromides, 1a and 1b, were prepared from the
corresponding Baylis–Hillman adducts with HBr according to the
reported method.8,9 The starting materials 3a–j were prepared by
the reactions of 1a and 1b with active methylene compounds
2a–f, as shown in Table 1. Introduction of 2a–f at the secondary po-
sition of the cinnamyl bromides was carried out in CH3CN in the
presence of DABCO and additional base such as NaOH or K2CO3

depending on the substrates, as reported.9,10 When we used 2a
and 2c–e, the corresponding products were formed as a syn/anti
mixture, and the separation was somewhat difficult. However,
the stereochemistry of 3 would not affect the Pd-catalyzed cycliza-
tion because the reaction would involve an enolate intermediate as
shown in Scheme 1, thus we used a syn/anti mixture for the Pd-cat-
alyzed reaction without separation.11

Initially, we examined the Pd-catalyzed reaction of 3a, as a
representative example, under various conditions, as shown in
Table 2. The use of Et3N in DMF was totally ineffective either at
70–80 �C or at higher temperature (entries 1 and 2). The use of
Cs2CO3 in toluene afforded 4a in 57% isolated yield (entry 3).10

The use of TBAB/K2CO3 both in DMF and CH3CN produced 4a in
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Table 1
Preparation of starting materials 3a–j

COOMe

Br
1a (92%)

Br

CN
Br

1b (86%)

Br

deoxybenzoin (2a)
acetophenone (2b)
desoxyanisoin (2c)
ethyl benzoylacetate (2d)
methyl acetoacetate (2e)
acetylacetone (2f)

EWG1
OH

Br

Ref. 8
(i) DABCO (1.1 equiv)
    CH3CN, rt, 30 min

(ii) 2a-f (1.2 equiv)
     base (1.2 equiv)
     rt, 5-48 h

EWG

Br

O

R2

R1

3a-j

Entry Substrates R1/R2/EWG Base/Time (h) Productsa (%)

1 1a + 2a Ph/Ph/COOMe NaOH/48 3a (85, 2/1)
2 1a + 2bb H/Ph/COOMe NaOH/48 3b (56)
3 1b + 2a Ph/Ph/CN NaOH/48 3c (89, 3/2)
4 1b + 2c p-MeOPh/p-MeOPh/CN NaOH/24 3d (83, 3/2)
5 1a + 2d COOEt/Ph/COOMe K2CO3/5 3e (83, 3/2)
6 1b + 2d COOEt/Ph/CN K2CO3/24 3f (90, 3/2)
7 1a + 2e COOMe/Me/COOMe K2CO3/24 3g (68, 1/1)
8 1b + 2e COOMe/Me/CN K2CO3/24 3h (85, 1/1)
9 1a + 2f COOMe/Me/COOMe K2CO3/24 3i (83)
10 1b + 2f COOMe/Me/CN K2CO3/24 3j (88)

a Isolated yield and the ratio of syn/anti in the parenthesis was based on 1H NMR.
b Excess amounts (3.0 equiv) of 2b was used. Otherwise the yield of a bis alkylation product was increased.
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Scheme 1.

Table 2
Optimization of reaction conditions for the synthesis of 4a

Entry Conditionsa Yield (%)

1 PPh3 (20 mol %), Et3N (2.0 equiv), DMF, 70–80 �C, 2 h Sluggish
2 PPh3 (20 mol %), Et3N (2.0 equiv), DMF, 110–120 �C,

30 min
Decompose

3 PPh3 (20 mol %), Cs2CO3 (2.0 equiv), toluene, reflux, 1 h 57
4 TBAB (1.0 equiv), K2CO3 (2.0 equiv), DMF, 70–80 �C, 2 h 27
5 TBAB (1.0 equiv), K2CO3 (2.0 equiv), CH3CN, reflux, 18 h 20

a Pd(OAc)2 (10 mol %) is common.
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low yield (20–27%) along with many intractable side products (en-
tries 4 and 5). As is often the case in the Pd-catalyzed coupling
reactions of aryl bromide and a ketone enolate,3a–d the use of
Cs2CO3 in toluene showed the best results.

The mechanism for the formation of 4a could be postulated as
shown in Scheme 2. Oxidative addition of Pd(0) to form (I), 5-
Pd(OAc)2/PPh3
COOMe

Ph
Ph

O

PdBr

3a

(I)

Cs2CO3
toluene, reflux

Scheme
endo-trig-carbopalladation12 to form the palladium intermediate
(II), and the following coupling with enolate to produce
dihydroindenofuran 4a. The structure of 4a was confirmed to be
dihydroindenofuran (exactly, 3a,8-dihydro-1-oxacyclopenta[a] in-
dene) by its HMBC and NOE data, as shown in Figure 1. The struc-
ture of dihydroindenofuran and the cis-ring junction (cis around
3a- and 8a-positions) was confirmed unequivocally by the X-ray
crystal structure of 4g (vide infra),13 as shown in Figure 2.

Encouraged by the results, we carried out the synthesis of var-
ious dihydroindenofurans with 3b–j under the optimized condi-
tions (entry 3 in Table 2), and the results are summarized in
Table 3. As shown in Table 3, the yields of products were highly
dependent on the substrates. The reaction of deoxybenzoin deriv-
ative 3c (entry 3) showed a similar result with that of 3a, while the
reaction of acetophenone derivative 3b produced 4b in low yield
(entry 2) presumably due to low enolate content of the acetophe-
none moiety. Desoxyanisoin derivative 3d also showed a low yield
of 4d due to a similar reason, and the reaction required a long reac-
tion time (entry 4). As expected from the results of entries 1–4,
COOMe

PdBr

Ph
O

Ph

O

H

COOMe

Ph
Ph

(II)

- Pd(0)

4a

1

3
3a

8

8a

4

7

- HBr

2.



Figure 2. ORTEP drawing of compound 4g.
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Figure 1. Selected HMBC (C?H) and NOE (H?H) correlations for 4a.

Table 3
Pd-catalyzed synthesis of dihydroindenofurans 4a

Entry 3 Time (h) Product 4 (%)

1 3a 1
O

Ph
Ph

COOMe

H
4a (57)

2 3b 12 O

Ph

COOMe

H
H

4b (42)

3 3c 22
O

Ph
Ph

CN

H
4c (62)

4b 3d 22
O

Ar
Ar

CN

H
4d (31)

5 3e 1 O

Ph

COOMe

H
EtOOC

4e (80)

6 3f 12 O

Ph
EtOOC

CN

H
4f (41)

7 3g 1 O

Me
MeOOC

COOMe

H
4g (74)

8 3h 2
O

Me
MeOOC

CN

H
4h (28)

9 3i 1
O

Me
MeOC

COOMe

H
4i (81)

10 3j 1
O

Me
MeOC

CN

H
4j (26)

a Conditions: compound 3 (1.0 mmol), Pd(OAc)2 (10 mol %), PPh3 (20 mol %),
Cs2CO3 (2.0 equiv), toluene, reflux, 22 h.

b Ar is p-methoxyphenyl.
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higher yields of dihydroindenofurans were expected for the sub-
strates 3e–j that has higher enol contents. The expectation was
found to be correct, and the yields of dihydroindenofurans were
good (74–81%) for the ester derivatives 3e, 3g, and 3i (entries 5,
7 and 9); however, the yields of dihydroindenofurans having a ni-
trile group (4f, 4h and 4j) were very low (26–41%), as shown in en-
tries 6, 8, and 10. The formation of many intractable side products
was observed, but the reason is not clear at this stage.

As a next entry, we examined the synthesis of a dihydrofuran
moiety-containing pentacyclic compound 4k using 1a and a-tetra-
lone (2g), as shown in Scheme 3. The starting material 3k was pre-
pared in 68% yield using the procedure in Table 1. The next Pd-
catalyzed cyclization of 3k under the same conditions afforded
4k in a reasonable yield (35%).
(i) DABCO (1.1 equiv)
    CH3CN, rt, 30 min

(ii) 2g (3.0 equiv)
     NaOH (1.2 equiv)
     rt, 48 h

COOMe

Br

3k (68%, 3/1)

1a

O

2g

O same conditions
O

COOMe

4k (35%)

+
2 h

Scheme 3.
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In summary, we disclosed an efficient synthesis of dihydroinde-
nofu rans starting from the Baylis–Hillman adducts via the Pd-cat-
alyzed 5-endo-trig-carbopalladation and enolate O-alkylation
cascade as a key step. This is the first example of enolate O-alkyl-
ation with a C(sp3)-bound palladium intermediate.
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127.62, 127.67, 127.99, 128.53, 128.57, 129.36, 130.89, 134.09, 139.48, 141.89,
149.42, 173.66; ESIMS m/z 391 (M++Na). Anal. Calcd for C25H20O3: C, 81.50; H,
5.47. Found: C, 81.29; H, 5.61.
Compound 4b: 42%; colorless oil; IR (film) 1735, 1244, 1207 cm�1; 1H NMR
(CDCl3, 300 MHz) d 3.56 (d, J = 17.7 Hz, 1H), 3.82 (s, 3H), 3.86 (d, J = 17.7 Hz,
1H), 4.85 (d, J = 3.3 Hz, 1H), 5.57 (d, J = 3.3 Hz, 1H), 7.20–7.34 (m, 7H), 7.56–
7.59 (m, 2H); 13C NMR (CDCl3, 75 MHz) d 44.56, 52.76, 60.14, 94.06, 97.38,
123.88, 125.14, 125.48, 127.46, 127.50, 128.20, 128.69, 130.24, 139.35, 143.02,
155.98, 173.66; ESIMS m/z 293 (M++1). Anal. Calcd for C19H16O3: C, 78.06; H,
5.52. Found: C, 78.33; H, 5.49.
Compound 4c: 62%; colorless oil; IR (firm) 2239, 1655, 1261 cm�1; 1H NMR
(CDCl3, 300 MHz) d 3.87 (d, J = 17.7 Hz, 1H), 3.94 (d, J = 17.7 Hz, 1H), 5.32 (s,
1H), 6.72 (d, J = 7.8 Hz, 1H), 7.10 (t, J = 7.8 Hz, 1H), 7.21–7.28 (m, 4H), 7.30–7.42
(m, 8H); 13C NMR (CDCl3, 75 MHz) d 45.70, 65.47, 82.29, 113.05, 119.94,
124.19, 124.96, 127.41, 127.58, 127.68, 128.08, 128.29, 128.84, 129.03, 129.45,
129.80, 133.00, 137.53, 140.05, 148.91; ESIMS m/z 336 (M++1). Anal. Calcd for
C24H17NO: C, 85.94; H, 5.11; N, 4.18. Found: C, 85.67; H, 5.35; N, 4.08.
Compound 4g: 74%; white solid, mp 57–59 �C; IR (KBr) 1742, 1705, 1648 cm�1;
1H NMR (CDCl3, 300 MHz) d 2.22 (s, 3H), 3.47 (d, J = 17.7 Hz, 1H), 3.77 (d,
J = 17.7 Hz, 1H), 3.81 (s, 3H), 3.82 (s, 3H), 4.92 (s, 1H), 7.22–7.26 (m, 3H), 7.52–
7.56 (m, 1H); 13C NMR (CDCl3, 75 MHz) d 14.33, 43.52, 50.96, 52.89, 58.55,
94.47, 105.65, 124.66, 125.26, 127.56, 127.84, 138.70, 142.46, 165.69, 168.33,
172.26; ESIMS m/z 289 (M++1). Anal. Calcd for C16H16O5: C, 66.66; H, 5.59.
Found: C, 66.95; H, 5.77.
Compound 4i: 81%; colorless oil; IR (film) 1751, 1625, 1385 cm�1; 1H NMR (CDCl3,
300 MHz) d 2.26 (s, 3H), 2.35 (s, 3H), 3.47 (d, J = 17.7 Hz, 1H), 3.77 (d, J = 17.7 Hz,
1H), 3.80 (s, 3H), 5.03 (s, 1H), 7.18–7.24 (m, 3H), 7.51–7.54 (m, 1H); 13C NMR
(CDCl3, 75 MHz) d 15.59, 29.44, 43.29, 52.87, 59.21, 93.91, 118.06, 124.49,
125.82, 127.65, 127.75, 138.48, 142.74, 166.87, 172.14, 193.07; ESIMS m/z 273
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(M++1). Anal. Calcd for C16H16O4: C, 70.57; H, 5.92. Found: C, 70.50; H, 6.13.
Compound 4k: 35%; pale yellow oil; IR (film) 1737, 1437, 1260 cm�1; 1H NMR
(CDCl3, 300 MHz) d 2.49–2.57 (m, 2H), 2.79–3.01 (m, 2H), 3.55 (d, J = 17.7 Hz,
1H), 3.82 (s, 3H), 3.87 (d, J = 17.7 Hz, 1H), 4.76 (s, 1H), 7.06–7.29 (m, 7H), 7.32–
7.34 (m, 1H); 13C NMR (CDCl3, 75 MHz) d 21.04, 28.44, 44.86, 52.76, 62.11, 94.32,
110.20, 120.85, 123.44, 125.08, 126.27, 127.14, 127.17, 127.49, 127.51, 127.80,
135.89, 139.53, 141.78, 149.35, 173.55; ESIMS m/z 319 (M++1). Anal. Calcd for
C21H18O3: C, 79.22; H, 5.70. Found: C, 79.56; H, 5.55.

11. We separated the two isomers in the case of 3a,10 and carried out the Pd-
catalyzed cyclization reactions separately. Both isomers produced 4a as the
major product, although the yield with minor isomer was slightly lower (37%)
than the cases of major isomer (59%) and the mixture (57%, entry 1 in Table 2).
12. For the examples of Pd-catalyzed cyclizations involving 5-endo-
carbopalladation in Baylis–Hillman chemistry, see: (a) Vasudevan, A.; Tseng,
P.-S.; Djuric, S. W. Tetrahedron Lett. 2006, 47, 8591–8593; (b) Park, J. B.; Ko, S.
H.; Hong, W. P.; Lee, K.-J. Bull. Korean Chem. Soc. 2004, 25,
927–930.

13. Crystal data of compound 4g: solvent of crystal growth (hexane); empirical
formula C16H16O5, Fw = 288.29, crystal dimensions 0.34 � 0.20 � 0.09 mm3,
monoclinic, space group P2(1)/n, a = 10.3057(19) Å, b = 10.362(2) Å,
c = 13.347(3) Å, a = 90�, b = 104.855(10)�, c = 90�, V = 1377.6(5) Å3, Z = 4,
Dcalcd = 1.390 mg/m3, F000 = 608, MoKa (k = 0.71073 Å), R1 = 0.0898,
wR2 = 0.2598 (I>2r(I)). The X-ray data has been deposited in CCDC with
number 777033.
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